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Bifurcation theory provides a classification of the expected ways in which the number 
and/or stability of invariant solutions (‘attractors’ and ‘repellors’) of nonlinear ordinary 
differential equations may change as parameter values are changed. The most common 
qualitative changes are ‘saddle-node’ bifurcations, ‘Hopf’ bifurcations, and ‘SNIPER’ 
bifurcations. At a saddle-node bifurcation, a pair of steady states, usually a stable node 
and an unstable saddle point, coalesce and disappear. At a Hopf bifurcation, a stable 
focus changes to an unstable focus and makes way for a small amplitude periodic 
solution (‘limit cycle’). At a SNIPER bifurcation, the coalescence of a saddle point and a 
stable node creates an infinite-period limit cycle solution. These bifurcations have clear 
physiological correlates in the regulation of DNA replication, mitosis and cell division. 
Saddle-node bifurcations are related to checkpoints in the cell cycle: the establishment 
and removal of checkpoints correspond to the creation and annihilation of stable steady 
states at saddle-node bifurcations. The repetitive nature of the cell cycle (G1-S-G2-M-
G1-etc.) is related to limit cycle solutions of the underlying kinetic equations: the ability 
to oscillate spontaneously arises at either a Hopf or a SNIPER bifurcation. 
 
Historical background 
Since the days of Isaac Newton, ordinary differential equations (ODEs) have been used 
throughout the physical and life sciences to describe the temporal development of 
dynamical systems: from the solar system, to the clock radio, to the regulation of DNA 
replication and cell division. Initially the focus was on ODEs that could be solved exactly 
in terms of ‘elementary’ functions of high-school algebra and trigonometry or ‘special’ 
functions of mathematical physics. But in the 1890’s Poincare (1899) introduced the 
‘qualitative’ theory of dynamical systems, i.e., systems of n nonlinear ODEs  
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Poincare proposed to interpret these equations as a vector field in n-dimensional state 
space, x, and to characterize this vector field by its invariant solutions, which can be 
either attractors or repellors. The crucial question for Poincare was not “what is the 
exact solution of the ODE?” but “how do the qualitative features of the attractors and 
repellors depend on the values of the parameters?” This latter question is the subject of 
bifurcation theory (Odell 1980; Strogatz 1994), which was developed in the mid-20th 
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Century by Andronov’s school of Russian physicists and engineers for n = 2 (Andronov 
et al. 1966), and later by a host of mathematicians for the general case (Kuznetsov 
2004).  
 
A one-parameter bifurcation diagram begins with a plot of the steady state value of a 
chosen dynamical variable, xi, as a function of a chosen parameter, pj, the ‘bifurcation 
parameter’. In Fig. 1A, we plot a typical bifurcation diagram for a bistable system. 
Between the two thresholds, θinact < pj < θact, the system can persist in either of two 
stable steady states (xi small or xi large). Precisely at the thresholds, pj = θinact and pj = 
θact, the dynamical system undergoes a bifurcation from one type of behavior (a single 
stable steady state) to a qualitatively different type of behavior (bistability). This type of 
bifurcation is called a ‘saddle-node’ or ‘fold’. In Fig. 1B, we illustrate a ‘Hopf’ bifurcation, 
in which a stable steady state loses stability and gives rise to stable limit-cycle 
oscillations. The limit cycles are born with small amplitude and grow in size as the 
parameter value pulls away from the bifurcation point. We shall meet some other types 
of bifurcations shortly. 

pj

θinact θact

A B

xi

pj

xi

SN

SN
Hopf

 

 
 
 
 
 
Figure 1. One-parameter bifurcation 
diagrams. (A) Saddle-node bifurcation. 
Solid line: stable steady state; dashed 
line: unstable steady state. (B) Hopf 
bifurcation. Thin solid line: stable 
steady state; thin dashed line: unstable 
steady state; thick solid line: maximum 
and minimum values attained by a 
stable limit cycle oscillation. 
 

Of special interest to systems biologists are the musings of Rene Thom (1989) on 
‘structural stability and morphogenesis’. Thom was highly regarded among 
mathematicians for his study of gradient dynamical systems,  
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where U(x) is a scalar function of the variables (think of it as the ‘potential energy’ of the 
system) and ( )1/ ,..., / nx x∇ = ∂ ∂ ∂ ∂  is the gradient operator. The steady state solutions of 
Eq. [2] are places where 0U∇ = , i.e. ‘singularities’ of the potential function. Thom’s 
great contribution was to classify the topologically distinct types of singularities of 
potential functions in n dimensions. Next Thom took the unusual step—unusual for a 
famous mathematician—to speculate that the bifurcations he had characterized might 
underlie the ‘unfolding’ of a fertilized egg into a larva. Following Waddington’s 
hypothesis that embryonic development is the evolution of a dynamical system on an 
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‘energy landscape’, Thom pointed out that his complete classification of the qualitative 
changes of behavior that could be observed under this type of gradient dynamic must 
provide the key to understanding morphogenetic transitions.  
 
Thom’s ideas were bitterly opposed by both theoretical and experimental biologists of 
his generation, and (perhaps) for good reasons. First of all, morphogenesis is governed, 
we know, by the interactions of genes and proteins (i.e., a biochemical interaction 
network), which is not a gradient dynamical system. Hence, the bifurcations of 
relevance to molecular cell biologists are not the singularities of potential functions 
(Thom’s case) but rather the generic bifurcations of nonlinear ODEs (the case of 
Andronov et al.). But Thom’s more fundamental idea (stripped of its unfortunate alliance 
to Waddington’s energy landscape)—that qualitative changes in cell physiology should 
be correlated with qualitative changes in the attractors and repellors of a vector field (a 
system of nonlinear ODEs)—is absolutely correct. It is the basis of the application of 
bifurcation theory to problems in molecular cell biology.  
 
One-parameter bifurcation diagrams and signal-response curves 
The connection between bifurcation theory and cell physiology is the signal-response 
curve. In a typical experiment, a molecular cell biologist might challenge cells with 
increasing amounts of an extracellular signal molecule and measure whether certain 
downstream genes are expressed or not. And a typical result is that, for low signal 
levels there is no expression, but for signal levels above a certain threshold there is 
strong expression of the gene (Fig. 2). In this circumstance, it is natural to ask what 
happens if the signal level is steadily decreased in cells that are expressing protein R? 
Do they turn off at the same signal strength where they turned on? Or at a much lower 
signal strength? Or not at all?  

In the first case, the signal-response curve is perfectly smooth and reversible; there are 
no qualitative changes in the behavior of the control system as the signal varies up and 
down. In the second case, there is a region of bistability between the two thresholds, 
and the behavior of the control system is qualitatively different over three ranges of 
signal strength: for S < θinact there is a single stable steady state with R small; for θinact < 
S < θact the control system can persist in either of two attractors (R small or R large) that 
are separated by an unstable steady state; and for S > θact there is a single stable 
steady state with R large. This is exactly the case of a one-parameter bifurcation 
diagram with saddle-node bifurcations bounding a zone of bistability (Fig. 1A).  

It is possible that θinact < 0, in which case the signal, S = [S] (a positive number), cannot 
be made small enough to flip the switch off. In this case, the control system is said to be 
a one-way switch. By increasing S, the switch can be turned on, but it can’t be turned off 
by decreasing S.  

There are many convincing examples of toggle switches in molecular and cell biology 
generally (Tyson et al. 2003) and in cell cycle regulation particularly (see the vignette on  
‘Bistability and Oscillations’).  
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Figure 2. Signal-response curve. The 
experimentalist can vary the signal strength S 
(say, the concentration of an extracellular 
ligand) and observe the response R (say, the 
expression level of a gene induced by S). As S 
is slowly increased, the expression of R turns 
on abruptly; a typical threshold-type response. 
What happens as S is slowly decreased? There 
are three possibilities. (a) The gene expression 
turns on and off at the same threshold signal 
strength: the signal-response curve is smooth 
and reversible; e.g., a Hill function. (b) The 
threshold for gene inactivation (θinact) is lower 
than the threshold for gene activation (θact): the 
signal-response curve has a region of 
bistability and functions like a toggle switch. (c) 
The gene cannot be inactivated by lowering the 
signal strength even to zero: the control system 
functions as a one-way switch. 

 

In another common physiological situation, a cellular process begins to oscillate when a 
stimulating signal gets large enough (Goldbeter 1996). In this case, the signal-response 
curve exhibits a Hopf bifurcation, as in Fig. 1B. 

These examples suggest that the signal-response curves often measured by cell 
physiologists are none other than one-parameter bifurcation diagrams in the parlance of 
applied mathematicians. If we may associate abrupt, qualitative changes in signal-
response characteristics of living cells with bifurcations in vector fields of nonlinear 
dynamical systems, then it is natural to ask how many different types of generic 
bifurcations are exhibited by dynamical systems and what do they look like? Are there 
hundreds of different types of bifurcations to match the seemingly boundless variety of 
cellular behaviors? Or are all the peculiarities of cellular signal processing simply 
variations on a few common themes? 
 
The answer is the latter. In addition to the saddle-node and Hopf bifurcations illustrated 
in Fig. 1, there are only a few other common, generic, one-parameter bifurcations: 
subcritical Hopf, cyclic fold, saddle-loop and SNIPER bifurcations (Fig. 3 and Table 1).  
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Figure 3. The other common types of bifurcation points. (A) Subcritical Hopf bifurcation and cyclic 
fold (CF) bifurcation. (B) Saddle-loop (SL) bifurcation. (C) Saddle-node infinite-period (SNIPER) 
bifurcation. 
 
 
Of this we can be certain: Cell physiology is governed by underlying regulatory networks 
that consist of biochemical reactions among genes, RNAs and proteins. These networks 
are dynamical systems; their dynamics are governed by nonlinear ODEs (biochemical 
kinetic equations). The solutions of these equations determine the time-dependent 
behavior of the cell, and the nature of these solutions are determined by the attractors 
and repellors of the dynamical vector field in state space. Qualitative changes in the 
behavior of cells must be reflections of qualitative changes in the nature of these 
attractors and repellors, i.e., on the generic bifurcations of nonlinear vector fields. 
Hence, the six types of bifurcations we have introduced must be the basic building 
blocks of all cellular signal-response curves. It is this connection between signal-
response curves of living cells and one-parameter bifurcation diagrams of dynamical 
systems that is the heritage of Rene Thom’s proposal.  
 
An important caveat to this interpretation of bifurcation theory is the fact that single cells 
are very small, with limited numbers of molecules (10s, 100s, 1000s) of each of the 
interacting species. Hence, continuous ODEs are only a first approximation to the 
dynamics of intracellular molecular control systems. The effects of stochastic variations 
of small numbers of molecules can have significant effects on the qualitative features of 
dynamical systems. Stochastic effects must be given due consideration, but subsequent 
to a thorough study of the system by bifurcation theory. 
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Relation to cell cycle regulation 
Bifurcation theory has been used to study the molecular basis of cell cycle regulation 
(e.g., Borisuk and Tyson 1998, Tyson et al. 2003, Czikasz-Nagy et al. 2006). The basic 
idea behind these papers is that a eukaryotic cell progresses through the DNA 
replication-division cycle by a series of transitions (G1/S, G2/M, M/G1) that correspond 
to bifurcations of the underlying molecular control system. Before each transition, the 
cell is arrested in a stable steady state of the dynamical system that corresponds to a 
particular physiological state: G1-arrest, G2-arrest or metaphase-arrest. To pass to the 
next stage of the cell cycle, the stable arrested state must be lifted, either by annihilation 
(at a SN or SNIPER bifurcation) or by losing stability (at a Hopf bifurcation). To prevent 
a transition, e.g., if there is some damage to the DNA or some problem in aligning 
chromosomes on the metaphase plate, then a ‘checkpoint’ mechanism stabilizes the 
arrested state by moving the bifurcation point to some higher value of the progression 
signal(s). For example, a schematic diagram of the fission yeast cell cycle is provided in 
Fig. 4.  
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Figure 4. A schematic diagram of the fission yeast cell cycle. The bifurcation diagram in Fig. 3C is 
interpreted here as a signal-response curve relating cyclin-dependent kinase (CDK) activity to cell growth. 
CDK is a protein kinase that governs progression through the cell cycle. In fission yeast, low CDK activity 
corresponds to a G1/S/G2 state and high activity to mitosis. Cell size can be thought of as a bifurcation 
parameter: cell size increases slowly as the cell grows, and the CDK control adapts quickly to an attractor 
of the vector field at the current size of the cell. The red curve is a ‘cell cycle trajectory’. At the size of a 
newborn cell (size = 1), the only attractor is a stable steady state of low CDK activity. After a brief G1 
period, the cell replicates its DNA and then pauses in G2 phase until it grows large enough to surpass the 
SNIPER bifurcation. The bifurcation point is the ‘critical size’ for the G2/M transition in fission yeast. The 
dynamical system is attracted to a large amplitude limit cycle, which carries the cell into mitosis (CDK 
increasing). The cell exits mitosis when CDK activity is destroyed, and this is the signal for the cell to 
divide. Cell size is abruptly halved, and the newborn cells (each of size = 1) are attracted to the stable 
G1/S/G2 steady state. Notice that the cell cycle time (the time required to progress around the red loop) is 
identical to the mass-doubling time (the time necessary to grow from birth size =1 to division size = 2).  
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During early embryogenesis, from fertilization to the mid-blastula transition, mitotic 
cycles proceed rapidly and synchronously, without checkpoint controls. In this case, the 
DNA replication-division cycles seem to be driven by spontaneous limit cycle 
oscillations. For more details, see the vignette on ‘Bistability and Oscillations’. 
 
 
Table 1. Generic bifurcations of dynamical systems 
 
Name Characteristics Cell cycle correlate 
Saddle-node Creation and annihilation of pairs of 

steady states 
Irreversible transitions; 
checkpoints 

Hopf, supercritical Birth of stable limit cycles of small 
amplitude and finite frequency 

Spontaneous MPF 
oscillations in embryos 

Hopf, subcritical Birth of unstable limit cycles of small 
amplitude and finite frequency 

Cyclic fold Creation and annihilation of pairs of 
limit cycles  

Subcrit Hopf and cyclic 
fold bif’ns occur in pairs 
and may correlate with 
embryonic MPF oscill’ns 

Saddle-loop Annihilation of a limit cycle by a 
homoclinic orbit at a saddle point; 
finite amplitude and small frequency 

SNIPER* or SNIC* 
(synonomous) 

Annihilation of a limit cycle by a 
homoclinic orbit at a saddle-node; 
finite amplitude and small frequency 

SL and SNIPER bif’ns 
are closely related; they 
are involved in irrev 
transitions in the yeast 
cell cycle (budding yeast 
and fission yeast) 

SNIPER = saddle-node infinite-period; SNIC = saddle-node invariant-circle 
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