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The physiological properties of cells—their growth, division, movement, signaling, 
metabolism, differentiation, death—are all controlled by gene-protein regulatory 
networks of considerable complexity. Thanks to the revolutionary advances of molecular 
genetics in the latter part of the 20th Century, much is known now about the genes and 
proteins that constitute these networks and about their interactions, as well as the 
meso-scale topology of particular regulatory networks and the global topology of 
genome-wide surveys of gene, mRNA and protein interactions. The analysis of 
genome-wide (‘omics’) data is still very much dominated by statistical methods, but at 
the local and meso-scale of network complexity it is possible to build detailed, accurate 
and predictive models of the dynamics of network behavior by using differential 
equations. 
 
The applicability of differential equations to modeling network dynamics in general, and 
cell cycle regulation in particular, is based on the following logic (Tyson et al. 2001). A 
molecular regulatory network can be described, depending on the level of detail 
available from experimental investigations, by (1) a system of biochemical reactions or 
(2) an ‘influence’ diagram or (3) a hybrid of the two types. These types of descriptions 
are illustrated in Fig. 1. Realistic networks are, of course, much more complex than the 
example given. Whether the network is described by chemical reactions or influences or 
a hybrid of the two, the network diagram is trying to tell us how one biochemical species 
is affecting the rates of production or removal of another species. As such, the network 
diagram can be converted into a set of ordinary differential equations (ODEs), one ODE 
for each time-varying biochemical concentration: 
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In this equation, [Xi] = concentration of species i, Pij = rate of the j-th reaction that 
produces species i, [X…] = concentrations of the time-varying biochemical species that 
participate in each of these reactions, [M…] = constant concentrations of the time-
invariant biochemical species (‘modifiers’) that participate in each of these reactions 
(e.g., the total concentration of the enzyme that catalyzes reaction j), and kj = the rate 
constant(s) needed to express the material flux through reaction j. Similarly, Ril = rate of 
the l-th reaction that removes species i, etc.  



 2

 

XP

X
HG

F

F

 

 
Figure 1. A typical molecular regulatory 
network. In this diagram, letters denote chemical 
species (proteins) and solid arrows represent 
chemical reactions transforming substrate(s) into 
product(s). A letter sitting next to an arrow denotes 
the enzyme catalyzing the reaction. Dashed arrows 
represent ‘influences’ of one protein on another: 
barbed arrows denote ‘activation’ and blunt arrows 
denote ‘inhibition’. The dynamics of this reaction 
network is represented by the system of five ODEs 
in Eq. [2]. 
 

Regulatory networks like Fig. 1 are sometimes called ‘wiring’ diagrams, in analogy to 
the schematic diagrams of electrical devices. Just like the dynamical behavior of an 
electrical device can be predicted (in practice) from Kirchoff’s Laws (ODEs for the 
voltages at various points in the circuit), so the dynamics of a molecular regulatory 
network can be predicted (in principle) from ODEs [1].  Unfortunately, the analogy to 
electrical engineering goes no further. For an electrical device, we can obtain a 
schematic wiring diagram from the manufacturer, as well as a specification of the 
numerical values of the parameters that characterize each component (resistances, 
capacitances, etc.). For the living cell, we must guess the wiring diagram, and we must 
estimate the rate constants from the very experiments we are trying to explain. In 
essence, we must ‘reverse engineer’ the cell’s circuitry by performing well-designed 
experiments to probe the input-output (signal-response) characteristics of the cell under 
normal and contrived conditions (including mutations which scramble the wiring diagram 
in controlled ways).  
 
For the many ways that differential equations have been used in molecular and cell 
biology, see the classic books by Edelstein-Keshet (1988), Murray (1989), Goldbeter 
(1996), Fall et al. (2002) and Keener and Sneyd (2009). 
 
Wiring diagrams and rate equations 
Figure 1, which will serve as our example of modeling by ODEs, can be interpreted as a 
model of MPF dynamics in a fertilized egg. (See: cell cycle dynamics, bistability and 
oscillations.) In this example, X = MPF = dimer of Cdk1 and cyclin B, XP = preMPF = 
phosphorylated (inactive) form of MPF, G = Wee1 = kinase that inactivates MPF, H = 
Cdc25 = phosphatase that converts preMPF into active MPF, F = APC/Cdc20 = 
ubiquitin-ligase that labels cyclin B for proteolysis. The production and removal of X and 
XP are described by chemical reactions (synthesis, degradation, phosphorylation, 
dephosphorylation), and kinetic equations for the rates of change of X and XP can be 
written by standard principles of biochemical kinetics: 
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In each case, the rate of a reaction is given either by the law of mass action (for 
synthesis and degradation reactions) or by the Michaelis-Menten rate law (for the 
phosphorylation and dephosphorylation reactions). (Which rate law we use for an 
enzyme-catalyzed reaction depends on whether the enzyme tends to work in its ‘linear’ 
regime or in its ‘saturated’ regime.)  Regulation of the enzymes, F, G and H in Fig. 1, 
are only specified as ‘influences’: X ‘activates’ F and H, and X ‘inhibits’ G. We choose to 
describe these influences by generic ODEs: 
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where ( )( ) 1 1 e ξξ −Ψ = + is a ‘soft Heaviside’ function; Ψ(ξ) varies smoothly from 0 for ξ 
<< -1 to 0.5 for ξ = 0 to +1 for ξ >> 1. According to Eq. [2c,d,e], F, G and H are 
continually changing to keep up with the soft Heaviside functions, which are changing in 
response to the dynamical variable X. In return, the dynamical variables X and XP are 
changing in response to F, G and H according to Eq. [2a,b]. It would be impossible to 
keep track of the implications of all these changes in one’s head; it is the job of the 
ODEs to track the variables for us. 
 
Numerical simulation of ODEs: parameter values and initial conditions 
Before we can solve the ODEs [2] we must specify numerical values for all the 
‘parameters’ (rate constants, Michaelis constants, ω‘s and σ’s); see Table 1. Usually, 
these parameters must be estimated from experimental data, but in this example we 
assign values to illustrate some interesting and physiologically relevant solutions of the 
ODEs. In addition to parameter assignments, we must also specify ‘initial conditions’ 
(values at t = 0) for the five time-varying species: X(0), XP(0), F(0), G(0), H(0); see Table 
2. 
 
With this information, we can now instruct a computer, using the ODEs [2], to take small 
time steps, dt, and update the values of the dynamical variables: 
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Table 1. Parameter values for the simulations in Figure 2.  
 

kg = kh = 10           Kmg = Kmh = 0.05           λf = λg = λh = 1 ωf1 = 1 
σg = 3 ωg0 = 0.2 ωg1 = -0.7 σh = 3 ωh0 = -0.2 ωh1 = 0.8 

Fig. 2A Fig. 2B Fig. 2C Fig. 2A Fig. 2B Fig. 2C 
ksx = 0.04 ksx = 0.1 ksx = 0.1 kdx = 1 kdx = 1 kdx = 0.5 
σf = 20 σf = 20 σf = 5 ωf0 = -0.3 ωf0 = -0.3 ωf0 = -0.4 

 
Table 2. Initial conditions for the simulations in Figure 2.  
 

 X XP F G H 
Fig. 2A 0.1149 1.5459 0.0241 0.5887 0.4197 
Fig. 2B 0.1036 1.0602 0.0181 0.5961 0.4111 

Fig. 2C(low) 0.1058 0.9649 0.1868 0.5933 0.4143 
Fig. 2C(med) 0.1946 0.526 0.318 0.544 0.471 
Fig. 2C(high) 0.3327 0.1472 0.4167 0.4753 0.5495 

 
 
The computer starts at t = 0, with the given initial conditions, computes the 
instantaneous rates of change (the functions in […] above), and then uses Eq. [3] to 
compute the values of the five dynamical variables at t = 0 + dt. The computer then 
repeats the process to get the values of the dynamical variables at t = 2dt, 3dt, etc. For 
dt small enough, this procedure gives an accurate numerical solution of the ODEs. Of 
course, there are more sophisticated and efficient algorithms for solving nonlinear 
ODEs, but they are all based on the fundamental procedure just described.  
 
In Fig. 2, we present numerical simulations of ODEs [2] for the parameter values in 
Table 1, with modifications given in the figure legend. For the case in Fig. 2A, the ODEs 
have a single stable steady state solution. In Fig. 2B the steady state solution is 
unstable and the system of ODEs exhibits spontaneous oscillations of all the variables. 
In Fig. 2C, the system exhibits a phenomenon called ‘bistability’, i.e., two stable steady 
states separated by an unstable steady state. 
 
Analysis of nonlinear ordinary differential equations 
Why does the system of nonlinear ODEs in Eq. [2] show the many different sorts of 
behavior illustrated in Fig. 2? Might the system show other, qualitatively different sorts 



 5

of behavior? For what values of the parameters are each of the types of solutions 
expected? The answers to these sorts of questions are provided by bifurcation theory, 
which is described in the vignette ‘Analysis of Cell Cycle Dynamics by Bifurcation 
Theory’. 
 
Parameter estimation 
If we have experimental measurements of some of the dynamical variables at a 
sequence of time points, under a variety of experimental conditions, both natural and 
contrived (e.g., in mutant cells), then it is sometimes possible to estimate the 
parameters in a dynamical model (and to test the adequacy of the wiring diagram) by 
least-squares fitting of numerical simulations of the model to the experimental data. For 
instance, the curves in Fig. 2B look very much like the measurements of Pomerening et 
al. (2005; their Fig. 1V). However, even for a modest network such as our example, with 
five dynamical variables and 18 parameters, fitting simulations to experimental data can 
be a very difficult task. It requires careful choice of experimental conditions and 
sophisticated methods of searching the parameter space. A lead-in to this extensive 
literature is provided by Apgar et al. (2010). 
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Figure 2. Representative simulations 
of ODEs [2]. The parameter values and 
initial conditions for these simulations are 
given in Tables 1 and 2. (A) A unique 
stable steady state (sss). Small pertur-
bations away from the steady state return 
immediately. A larger perturbation, X(0) = 
0.5, exhibits a transient pulse of MPF 
activity before returning to the steady 
state. This behavior is called ‘excitability’. 
(B) A stable limit cycle oscillation. In 
addition to X(t) = [MPF], we also plot XT(t) 
= X(t) + XP(t) = [total cyclin]. The period of 
oscillation is 29 min. Compare to Fig. 1V 
in Pomerening et al. (2005). (C) Two co-
existing stable steady states separated 
by an unstable steady state (uss). 
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Alternative modeling strategies 
In this chapter, we have discussed modeling by nonlinear ODEs, assuming that the cell 
is a well-mixed chemical reactor. Surprisingly, in some cases this is not a bad 
approximation. For example, the time it takes for a typical protein to diffuse across a 
yeast cell (diameter ~5 μm) is only about 10 s, which is very short compared to the 
interdivision time (at least 90 min) of a yeast cell. Hence, for models of the yeast cell 
cycle, the cytoplasm is essentially well-mixed. Of course, one might want to distinguish 
between nuclear and cytoplasmic compartments, but this situation can be handled with 
nonlinear ODEs by including fluxes of components into and out of the nucleus. 
 
In other situations, where the time scale is shorter and/or the space scale is larger, one 
must take into account the coupling of local chemical reactions with molecular diffusion 
(and possibly vectorial transport processes, e.g., along microtubules). In these cases, 
the correct modeling approach might be partial differential equations.  
 
In some cases, when very little is known about the underlying biochemistry of a control 
system, systems biologists prefer to model the system with a Boolean network, an 
approach described elsewhere in the Encyclopedia of Systems Biology.  
 
Software for dynamic modeling 
There are several convenient software packages for modeling molecular regulatory 
networks with differential equations: 
Copasi www.copasi.org  
XPP http://www.math.pitt.edu/~bard/xpp/xpp.html  
Madonna http://www.berkeleymadonna.com/download.html  
Reaction-diffusion modeling with partial differential equations is best done by 
Virtual Cell http://www.nrcam.uchc.edu/  
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